N @ A

. Form Approved
AD—A243 032 :NTATION PAGE OMB No, 0704-0188
Yated to average ! hour pér response. including the tme for reviewing instructions, searching existing data sources,
““\‘“m‘“‘“‘\‘“‘\“\“\““\\“m\“\ reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of thi
purden. 20 Washington Headquarters Services, Directorate for information Operations and Reports, 1215 jetfersgn
Oftice of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.
. eww wivel {LEAVE DIANK) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED g AN/ uapl
May 1991) 1 Jul 90 - 30 Jun 91
4. TITLE AND SUBTITLE) S. FUNDING NUMBERS
SOFTWARE ISSUES AT THE USER INTERFACE (U) 61102F
2304/A3

6. AUTHOR({S)

Oliver A. McBryan
AFQSREZ. 7~ 7

a

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

University of Colorado, at Boulder REPORT NUMBER

Department of Computer Science . .

Campus Box 430 ;v} 5(G (f

Boulder, CO 80309-0430 i CU-CS-527-91
AT S O oo

i
[

10. SPONSORING / MONITORING

9. SPONSORING / MONITORING AGENCY NAME(S) At{'\?*ADDRE;SS(ES) AGENCY REPORT NUMBER

AFOSR/NM P RVEY NN

Building 410
G

Bolling AFB DC 20332-6448 AFOSR-89-0422

L

-

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for Public Release;
Distribution Unlimited UL

13. ABSTRACT (Maximum 200 words)

Reviewed were software issues that are critical to the successful
integration of parallel computers into mainstream scientific computing.
Clearly a compiler is the most important software tool available to a user
on most systems. Discussed were compilers from the point of view of
communication compilation - their ability to generate efficient
communication code automatically. 1Illustrated were two examples of
distributed memory computers where almost all communication is handled by
the compiler rather than by explicit calls to communication libraries.
Closely related to compilation is the need for high quality debuggers.
While single node debuggers are important, parallel machines hava their
own specialized debugging needs related to the complexity of in'2rprocess
communication and synchronization. They have developed a powerful
simulation tool which was developed for such systems and which has proved
essential in porting large applications to distributed memory systems.

14. SUBJECT TERMS 15. NUMBER OF PAGES
9

16. PRICE CODE.

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION |[20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescniped by ANSI Std 239-°8

Software Issues at the User Interface
Oliver A. McBryan

CU-CS-527-91 May 1991
1 JUL 90 - 30 JUN 91

‘A uusioa For A
CoNT qv,‘x - -

B Al SO G 13

Pohaerlzogieed M
[y

i Jascilieatton

—— . m————

I YA

" Dlatriout tlen/
Department of Computer Science i.ﬁi“ff lavility Codes
University of Colorado at Boulder ; Avall csdfer
Campus Box 430 Dist | spsetal ;
Boulder, Colorado 80309-0430 USA F\'\
(303) 492-3898 | ‘
(303) 492-2844 Fax :

mcbryan@cs.colorado.edu

91-16 6514
\M\%\W\N\W\m\

91 1126 002

SOFTWARE ISSUES AT THE USER INTERFACE'
Oliver A. McBryan*

Department of Computer Science
University of Colorado
Boulder, CO 80309

ABSTRACT

We review software issues that are critical to the successful integration of parallel computers into main-
stream scientific computing. Clearly a compiler is the most important software tool available to a user on
most systems. We discuss compilers from the point of view of communication compilation - their ability
to generate efficient communication code automatically. We illustrate with two examples of distributed
memory computers where almost all communication is handled by the compiler rather than by explicit
calls to communication libraries.

Closely related to compilation is the need for high quality debuggers. While single node debuggers
are important, parallel machines have their own specialized debugging needs related to the complexity of
interprocess communication and synchronization. We describe a powerful simulation tool we have
developed for such systems and which has proved essential in porting large applications to distributed
memory Systems.

Other important software tools include high level languages, libraries and visualization software.
We discuss aspects of these systems briefly. Ultimately however, general purpose supercomputing
environments are likely to include more than a single computer system. Parallel computers are often
highly specialized, and rarely provide all of the facilities required by a complete application. Over the
coming decade we will see the development of heterogeneous environments connecting diverse super-
computers (scalar, vector and parallel) along with high end graphics, disk farms and networking hubs.
The real user interface challenge will then be to provide a unified picture of such systems to potential
users.

t Presented st Frontiers of Supercomputing II: A National Reassesessment, Los Alamos National i.abomoly. August 1990.
* Research supported by the Air Force Office of Scientific Research, under grant AFOSR-89-0422

1. INTRODUCTION

This paper will survey a selection of issues dealing with software and the user interface,
always in the context of parallel computing.

The most obvious feature in looking back over the last five to ten years of parallel comput-
ing is that it has been clearly demonstrated that parallel machines can be built. This was a
significant issue eight or ten years ago, particularly in the light of some early experiences. There
was a feeling that the systems would be too unreliable, with mean time to failure measured in
minutes, and intractable cooling and packaging issues. There are now several examples of real
highly parallel systems such as the Connecton Machine CM-2 and the iPSC/860, and these are
certainly recognized as serious computers and among the leading supercomputers at the present
time.

It has also been shown that model problems can be solved efficiently on these systems. For
example, linear algebra problems, partial differential equation solvers, and simple applications
such as QCD have been modeled effectively. In a few cases, more complex models such as oil
reservoir simulations and weather models have been parallelized.

While hardware progress has been dramatic, system software progress has been painfully
slow, with a few isolated exceptions which I will highlight in the following section. Another
area in which there has been almost no progress is in demonstrating that parallel computers can
support general purpose application environments. Most of what we will present here will be
motivated to some extent by these failures.

We could begin by asking what a user would like from a general purpose supercomputer

- application environment. In simplest terms, he would like to see a computer consisting of a pro-

cessor that is as powerful as he wants, a data memory as large as his needs, and massive connec-

tivity with as much bandwidth (internal and external) as desired. Basically he would like the

supercomputer to look like his desk top workstation. This also corresponds to the way ne would
like to program the system.

It is well known that there are various physical limitations such as the finite speed of light
and cooling issues that prevent us from designing such a system. As a way around, one has been
led to parallelism which replicates processors, memories and data paths in order to achieve com-
parable power and throughput. To complexify the situation further there are many different
ways to actually effect these different connections, as well as several distinctly different choices
for control of such systems. Thus we end up with the current complexity of literally dozens of
different topologies and connection strategies.

Yet the user wants to think of this whole system as a monolithic processor if he possibly
can. We will focus on several software areas where the user obviously interacts with the system,
and discuss ways in which the software can help with this issue of focusing on the machine as a
single entity.

At the lowest level we will discuss compilers, but not from the point of view of producing
good machine code for the individual processors, but rather from the higher level aspect of how
the compiler can help with the unifying aspect for parallel machines.

-3-

Then there is the all-important debugging, trace and simulauca phases. People actually
spend most of their time developing programs rather than running them, and if this phase is not
efficient for the user, the system is likely to ultimately be a failure.

We will briefly discuss several related developments: higher-level languages, language
extensions and libraries. Portable parallel libraries provide a key way in which the user’s
interaction with systems can be simplified. Graphics and the visualization pipeline is of course a
critical area about which we will make several comments. For each of these topics we will refer
to other papers in the volume for more coverage.

Finally, we will discuss the development of software for heterogeneous environments.
which is in many ways the most important software issue. No one parallel machine is going to
turn out to provide the general-purpose computer that the user would really like to have. There
will be classes of parallel machines, each well suited to a range of problems, but unable to pro-
vide a solution environment for the full range of applications. Heterogeneous systems will allow
complex algorithms to avail of appropriate and optimal resources as needed. So ultimately we
will be building heterogeneous environments, and the software for those systems is perhaps the
greatest challenge in user interface design in the near future.

2. COMPILERS AND COMMUNICATION

There are three roles that compilers play in the context of parallel machines. First of all,
they provide a mechanism for generating good scalar and vector node code. Since that topic is
covered adequately in other papers in this volume, we will not focus on it here. Rather we will
focus on the fact that the compiler can help the user by taking advantage of opportunities for
automatic parallelization, and particularly important in the context of distributed machines, there
is the possibility for compilers to help the user with some of the communication activities.

The current compilers do a very good job in the area of scalar/vector node code generation,
although some node architectures (e.g. i860) are quite a challenge to compiler writers. Some of
the compilers also make a reasonable effort in the area of parallelization, at least in cases where
data dependencies are obvious. However, there is very little to point to in the third area - of
compilers helping on distributed machines. The picture here is not completely bleak, so we will
refer to two examples that really stand out, namely Thinking Machines Corporation’s Connec-
tion Machine CM-2 and Myrias Research’s SPS-2 computers. In both of these systems the com-
pilers and the associated run-time system really help enormously with instantiation and optimi-
zation of communication.

-4-

2.1. Myrias SPS-2: Virtual Memory on a Distributed System

The Myrias SPS-2 system was introduced in Gary Montry’s presentation. It is a typical
distributed-memory machine, based on local nodes (Motorola 68020) with some memory associ-
ated, and connected by busses organized in a three-level hierarchy. The SPS-2 has the remark-
able feature that it supports a virtual shared memory, and that feature is what we want to focus
on here. For further details on the SPS-2 we refer to our paper!.

On the system side, virtual shared memory is implemented by the Fortran compiler and by
the run-time system. The result is to present a uniform 32-bit address space to any program,
independent of the number of processors being used. From the user’s point of view, he can write
a standard Fortran F77 program, compile it on the machine, and run it as is, without any code
modification. The program will execute instructions on only one processor, (assuming it is writ-
ten in standard Fortran), but it may use the memory from many processors. Thus even without
any parallelization, programs automatically use the multiple memories of the system, through
the virtual memory. For example, a user could take a large CRAY application, with a data
requirement of Gbytes, and would have it running immediately on the SPS-2 despite the fact that
each node processor has only 8 Mbytes of memory.

With the sequential program now running on the SPS-2, the next step is to enhance perfor-
mance by exploiting parallelism at the loop level. In order to parallelize the program, one seeks
out loops where the internal code in the loop involves no data dependencies between iterations.
Replacing DO by PARDO in such loops parallelizes them. This provides the mechanism to use
not only the multiple memories, but also the multiple processors.

Developing parallel programs then becomes a two-step refinement: first of all use multiple
memories by just compiling the program, and secondly adding PARDOs to achieve instruction
parallelism.

As discussed in the following section, the virtual memory support appears to reduce SPS-2
performance by about 40-50%. A lot of people would regard a 50-percent efficiency loss as too
severe. But we would argue that if one looks at the software advantages over long term projects
of being able to implement shared-memory code on a distributed-memory system, those 50-
percent losses are certainly affordable. However one should note that the SPS-2 is not a very
powerful supercomputer as the individual nodes are 150 Kflops 68020 processors. It remains to
be demonstrated that virtual memory can run on more powerful distributed systems with reason-
able efficiency.

One other point that should be made is that we are not talking about virtual shared memory
on a shared-memory system. The SPS-2 computer is a true distributed-memory system. Conse-
quently one cannot expect that just any shared memory program will run efficiently. In order to
run efficiently, a program should be well suited to distributed systems to begin with. For exam-
ple, grid-based programs that do local access of data will run well on such a system. Thus while
you can run any program on these systems without modification, you can only expect good per-
formance from programs that access data in the right way.

-5-

The real benefit of the shared memory to the user is that he doesn’t have to consider the
layout of data. Data flows naturally to wherever it is needed, and that is really the key advantage
to the user of such systems. In fact for dynamic algorithms, extremely complex load balancing
schemes have to be devised in order to accomplish what the SPS-2 system does routinely.
Clearly such software belongs in the operating system, and not explicitly in every users pro-

grams.

2.1.1. Myrias SPS-2: A Concrete Example

In this section we study simple relaxation processes for 2D Poisson equations in order to
illustrate the nature of a Myrias program.. These are typical of processes occurring in many
applications codes involving either elliptic PDE solution or time evolution equations. The most
direct applicability of these measurements is to performance of standard "fast solvers” for the
Poisson equation. The code kernels we will describe are essentially those used in relaxation,
multigrid and conjugate gradient solution of the Poisson equation. Because the Poisson equation
has constant coefficients, the ratio of computational work per grid point to memory traffic is
severe, and it is fair to say that while typical, these are very hard PDE to solve efficiently on a
distributed memory system.

The relaxation process has the form:
v(d) =su@Gi)+r@(+L)+u(-1,0)+u(i+l)+u(,i-1)),

Here the arrays are of dimensions n;xn, and s, r are specified scalars, often 4 and 1 respec-
tively. The equation above is to be applied at each point of the interior of a 2D rectangular grid,
which we will denote generically as G. Were the equations to be applied at the boundary of G,
then they would index undefined points on the right hand side. This choice of relaxation scheme
corresponds to imposition of Dirichlet boundary conditions in a PDE solver. The process gen-
erates a new solution v from a previous solution u. The process is typified by the need to access
a number of nearby points. At the pointi,j it requires the values of u at the four nearest neigh-
bors.

We implement the above algorithm serially by enclosing the expressidn in a nested set of
DO loops, one for each grid direction.

do 10 j = 2,n1-1
do 10 i = 2,n2-1
v{4,1) = s*u(j,L) + z(u(j,i-1) + u(j,i+l) + u(j-1,1) + u(3+1,1))
10 continue

To parallelize this code using T parallel tasks, we would like to replace each DO with a
PARDO, but this in general generates too many tasks - a number equal to the grid size. Instead
we will decompose the grid G into T contiguous rectangular subgrids and each of T tasks will be
assigned to process a different subgrid.

-6-

The partidoning scheme used is simple. Let T=T;T, be a factorization of T. Then we
divide the index interval [2,n,—1] into T, essentially equal pieces and similarly we divide
(2,n,~-1] into T, pieces. The tensor product of the interval decompositions defines the 2D
subgrid decomposition.

In case T does not divide n,~2 evenly, we can write:

nx—2 = thl + rl, 091<T1.

We then make the first 7, intervals of length 4 ,+1 and the remaining T,~r; intervals of length
h,, and similarly in the other dimension(s). This is conveniently done with a procedure

decompose (a ,b ,t istart iend)

which decomposes an interval [a,b] into ¢ near-equal length subintervals as above, and which
initializes arrays istart(t), iend (t) with the start and end indices of each subinterval.
Thus the complete code to parallelize the above loop takes the form:

decomposa(2,nl-1,tl,istartl, iendl)
decompose (2,n2~-1,t2,istart2, iend2)
paxdo 10 ql=1,tl
pardo 10 g2=1,t2

do 10 i= istartl(ql),iendl(ql)

do 10 j= istart2(q2),iend2(q2)

v(j,1) = s*u(j,1i) + r(u(j,i-1) + u(j,i+l) + u(3j-1,4) + u(j+i,i))
10 continue

The work involved in getting the serial code to run on the Myrias using multiple processors
involved just one very simple code modification. The DO loop over the grid points is replaced
by, first of all, a DO loop over processors, or more correctly tasks. Each task computes the lin-
its within the large array that it has to work on by some trivial computation. And then the task
goes ahead and works on that particular limit. However the data arrays for the problem were
never explicitly decomposed by the user as would be needed on any other distributed memory
MIMD machine.

This looks exactly like the kind of code you would write on a shared-memory system. Yet
the SPS-2 is truly a distributed-memory system. It really is similar to an Intel Hypercube from
the logical point of view. It is a fully distributed system, and yet you can write code like this
that has no communication primitives. That is a key advance in the user interface of
distributed-memory machines, and we will certainly see more of this approach in the future.

-7-

2.1.2. MYRIAS SPS-2: Efficiency of Virtual Memory

- 'We have made numerous measurements on the SPS-2 that attempt to quantify the cost of
using the virtual shared memory in a sensible wayl. One of the simplest tests is a saxpy opera-
tion (adding a scalar times a vector to a vector):

Yi =Y tax; .

We look at the change in performance as the vector is distributed over multiple processors, while
performing all computations using only one processor. Thus we take the same vector, but allow
the system to spread it over varying numbers of processors, and then compute the saxpy using
just one processor. We define the performance with one processor in the domain as efficiency 1.
As soon as one goes to two or more processors there is a dramatic drop in efficiency to about
60%, and performance stays at that level more or less independent of the numbers of processors
in the domain. That then measures the overhead for the virtual shared memory.

A lot of people would regard a 50-percent efficiency loss as too severe. We would argue
that if you look at the software advantages over long-term projects of being able to implement
shared-memory code on a distributed-memory system, then 50-percent losses are certainly
affordable.

Another aspect of efficiency related to data access patterns may be seen in the relaxation
example presented in the previous section. The above procedure provides many different paral-
lelizations of a given problem, one for each possible factorization of the number of tasks T. At
one extreme are decompositions by rows (casc T,=1), and at the other extreme are decomposi-
tions by columns (T,=1), with intermediate values representing decompositions by subrectan-
gles. Performance is strongly influenced by which of these choices is made. We have in all
cases found that decomposition by columns gives maximum performance. This is not a priori
obvious, as in fact area-perimeter considerations would suggest that virtual memory communica-
tion would be minimized with a decomposition where T, =T,. Two competing effects are at
work: the communication bandwidth requirements are determined by the perimeter of subgrids,
whereas communication overhead costs (including memory merging on task completion) are
determined additionally by a factor proportional to the total number of data requests. The latter
quantity is minimized by a column division. Row-division is unfavorable because of the Fortran
rules for data storage.

It is instructive to study the variation in performance for a given task number T as the task
decomposition varies - we refer to this as "varying the subgrid aspect ratio", although in fact it is
the task subgrid aspect ratio. We present sample results for 2D relaxations in Table 1. The
efficiency measures the deviation from the optimal case. Not all aspect ratos would in fact run.
For heavily row-oriented ratios (e.g. T1=1, T,=T) the system runs out of virtual memory and
kills the program unless the grid size is quite small.

Table 1: 2D Effect of Subgrid Aspect Ratio

Grid D T1 T2 Mflops Efficiency

Y ———————— |

S12x512 64 1 o4 036 022
SI2x512 &4 2 32 076 047
512x512 64 4 16 217 134
512x512 64 8 8 502 310
512512 64 16 4 946 584
S12x512 64 32 2 1336 825
512512 64 64 1 1.619 1.000

2.2. The Connection Machine CM-2: Overlapping Communication with Computation

The Connection Machine CM-2 provides another good example of how a powerful com-
piler can provide a highly effective user interface and free the user from most communication
issues. The Connection Machine is a distributed memory (hypercube) SIMD computer which in
principle might have been programmed using standard message passing procedures. For a more
detailed description of the CM-2 see? In fact the assembly language of the system supports such
point to point communication and broadcasting. However Connection Machine high level
software environments provide basically a virtual shared memory view of the system. Each of
the three high level supported languages: CM Fortran, C* and *Lisp, makes the system look to
the user as if he is using an extremely powerful uniprocessor with an enormous extended
memory. These languages support parallel extensions of the usual arithmetic operations found
in the base language, which allows SIMD parallelism to be specified in a very natural and simple
fashion. Indeed CM-2 programs in Fortran or C* are typically substantially shorter than their
serial equivalents from workstations or CRAY’s, because DO loops are replaced by parallel
expressions.

However in this discussion I would like to emphasize that very significant communication
optimization is handled by the software. This is best illustrated by showing the nature of the
optimizations involved in code generation for the same generic relaxation type operation dis-
cussed in the previous section. We will see that without communication optimization the algo-
rithm runs at around 800 megaflops, which increases to 3.8 gigaflops when compiler optimiza-
tions are used to overlap computation and communication..

For the simple case of a Poisson type equation, the fundamental operation v = Au takes the
form (with » and s scalars):

vi,j =su,-'j +r(u,-,,,1'j +u,-_w- +u,-‘j+1 +u,-',-__1) .

-9.

The corresponding CM-2 parallel Fortran takes the form:

v = sg*ay + r*(cshift(u,1,1) + cshift(u,l,-1) + cshift(u,2,1l) + cshift(u,2,-1)) .

Here cshift(u,d 1) is a standard Fortran 90 array operator which returns the values of a muld-
dimensional array u at points a distance ! away in dimension direction d.

The equivalent *LISP version of a function applya forv = Au is:

(defun *applya (u v)

(*sat v (~'! (®t'! (11 s8) u)
(*t?! ('Y) (+!'! (news!! u -1 0) (news!! u 1 0)
(news'!! u 0 -1) (news!! u 0 1)
M)

*Lisp uses !! to denote parallel objects or operations, and as a special case, !! 5 is a parallel
replication of a scalar s. Here (news!! u dx dy) returns in each processor the value of parallel
variable u at the processor dx processors away horizontally and dy away vertically. Thus
cshift (i+1,j) in Fortran would be replaced by (news!!/ u 1 1) in *Lisp.

The *Lisp source shown was essentially the code used on the CM-1 and CM-2 impiementa-
tion described in3. When first implemented on the CM-2 it yielded a solution rate of only .5
Gflops. Many different optimization steps were required to raise this performance to 3.8 Gflops
over a one year period. Probably the most important series of optimizations turned out to be
those involving the overlap of communication with computation. Working with compiler and
microcode developers at Thinking Machines Corporation, we determined the importance of such
operations, added them to the microcode and finally improved the compiler to the point where it
automatically generated such microcode calls when presented with the source above.

We will illustrate the nature of the optimizations by discussing the assembly language
(called PARIS an acronym for PARallel Instruction Set) code generated by the optimized com-
piler for the above code fragment. The PARIS code generated by the optimizing *Lisp compiler
under version 4.3 of the CM-2 system is shown in the display below. Here the code has
expanded to generate various low level instructions, with fairly recognizable functionality,
including several that overlap computation and communication such as:

cmi .get—from —east—with—f —add —always.

which combines a communication (getting data from the east) with a floating-point operation
(addition).

-10 -

Optimized PARIS Code for Relaxation:

(defun *applya (u v)

(let* ((slc::stack-indax *stack-index*)
(-{!-indax-2 (+ slc::stack-index 32))
(pvar-location-u-11 (pvar-location u))
(pvar-location-v-12 (pvazr-location v)))

(cm:get-from-west-always -!!-index-~2 pvar-location-u-1l 32)
(cm:get-from-east -always *!!{-constant-indexd4 pvar-location-u-11 32)

(cmi: :f4+always ~!|-index-2 *!!-constant-index4 23 8)

(cmi: :get-from-east-with-f-add-always -!!-index-2 pvar-location-u-1l1l 23 8)

(cmi::f-multiply-constant-3-always pvar-location-v-12 pvar-location-u-11l s 23 8)
(cmi: :£-gubtract-maltiply-constant-3-always pvar-locatioan-v-12
pvar-location-v-12 -!!-index-2 r 23 8)

(cm:get-from-north-always -!!-index-2 pvar-locatioan-u-11 32)
(cmi::f-always sla::stack-index -!!-indeax-2 23 8)
(cmi: :get~-from-north-with-f-subtract-always pvar-location-v-12 pvar-location-u-11 23 8)

(cm:get-from-south-always -!!-~-indax-2 pvar-location-u-1ll 32)

(cmi: :float-subtract pvar-location-v-12 slc::stack-indax -!!-index-2 23 8)

(cmi: :get-from-socuth-with-f-subtract-always pvar-location-v-12 -{!-indax-2 23 8)
)

Obviously the generated assembly code is horrendously complex. If the user had to write
this code, the Connection Machine would not be selling today - even if the performance was
higher than 3.8 Gflops! The key to the success of Thinking Machines in the last two years has
been to produce a compiler that generates such code automatically, and there is where the user
interface is most enhanced by the compiler. The development of an optimizing compiler of this
quality, addressing communication instructions as well as computational instructions is a major
achievement of the CM-2 software system. Because of its power, the compiler is essentially the
complete user interface to the machine.

3. DEBUGGING TOOLS

The debugging of code is a fundamental user interface issue. On parallel machines, and
especially on distributed memory systems, program debugging can be extremely frustrating.
Basically one is debugging not one program, but possibly 128 programs. Even if they are all
executing the same code, they are not executing the same instructions if the system is MIMD.
Furthermore there are synchronization and communications bugs that can make it extremely

-11-

difficult to debug anything. For example, one problem that can occur on distributed systems is
that intermediate nodes that are required for passing data back for debugging from the node
where a suspected bug has developed, may themselves be sick in some form or another. Debug-
ging messages sometimes arrive in a different order than you sent them in, and in any event may
well be coming in multiples of 128 (or more). And finally, the overall complexity of the systems
can be extremely confusing, particularly when communication data structures involve complex
numbering schemes such as Grey codes.

We would like to give an example of a debugging tool that we have developed, and which
we have worked with over some time with good experiences. The tool is a parallel distributed-
system simulator called PARSIM. One goal of PARSIM was to develop an extremely simple
and portable simulator that could be easily instrumented and coupled with visualization.

Portability is achieved by developing a UNIX based tool, where the lowest level communi-
cation is implemented through a very simple data transfer capability. The data transfer may be
handled using either IP facilities or even just by using the UNIX file system. PARSIM provides
library support for Intel Hypercube functionality and also library support for other similar com-
munication capabilitdes. All of the standard communication protocols are supported including
typed messages, broadcasts and global operations. Finally PARSIM is usable from Fortran or C.
In fact a user simply links the host and node programs of his application to the PARSIM library.

PARSIM maintains a full trace history of all communication activity. A portable X-11
interface provides a graphical view of all the communication activities so that as the simulation
is running one can monitor all communication traffic between nodes. The graphical display
represents nodes by colored numbered circles, and messages by arms reaching out from the
nodes: a dispatched message is represented by an arm reaching towards the destination, while a
receive request is represented by an arm reaching out from the receiver. When a requested mes-
sage is actually received the corresponding send and receive arms are linked to form a single
path indicating a completed transaction. Nodes awaiting message receipt are highlighted and the
types of all messages are displayed. In addition to the main display, separate text windows are
used to display the output of all node and host processes. Thus the user can watch the communi-
cation activity on a global scale while maintaining the ability to follow details on individual pro-
cessors. The display works effectively on up to 32 nodes, although typically a smaller number
suffices to debug most programs. Finally PARSIM provides a history file that records the correct
time sequence in which events are occurring. The history file may be viewed later to recheck
aspects of a run without the need to rerun the whole program.

PARSIM has turned out to be a key to porting large programs to a whole range of parallel
machines, including the Intel iPSC/860. It is much easier to get the programs running in this
environment than it is on the Intel. Once applications are running on the simulator, they port to
the machine very quickly. As a recent example, with Charbel Farhat of the University of
Colorado, we have ported a large (60,000) line finite element program to both the iPSC/860 and
the SUPRENUM-1 computers in just several weeks. Thus user interface tools of this type can be
extremely helpful.

-12-

4. HIGH LEVEL LANGUAGES, EXTENSIONS, LIBRARIES AND GRAPHICS

There has been substantial progress recently in the area of high-level languages for parallel
systems. One class of developments has occurred in the area of object-oriented programming
models to facilitate parallel programming. An example that I've been involved with was a C++
library for vector and matrix operations, which was implemented on the Intel hypercube, the FPS
T-series, the Ametek 2010, the Connection Machine CM-2, and several other systems. Another
example is the language DINO developed by R. Schnabel and co-workers at the University of
Colorado®.

There are also some language extensions of several standard languages that are extremely
important because they have a better chance of becoming standards. An example here would be
the Fortran 90 flavors, for example, Connection Machine CM Fortran. A user can write pure
Fortran 90 programs and compile them unchanged on the CM-2, although for best performance
it is advisable to insert some compiler directives. This provides the possibility of writing a pro-
gram for the Connection Machine that might also run on other parallel machines - for example
on a CRAY Y-MP. Indeed now that many manufacturers appear to be moving (slowly) towards
Fortran 90, there are real possibilities in this direction. Several similar extensions of other
languages are now available on multiple systems. One good example would be the Connection
Machine language extensions C* of the C language. The C* language is now available on
Sequent, Masspar and several other systems.

There are some problems with the high-level language approach. One is the lack of porta-
bility. There is increased learning time for users if they have to learn not only the lower-level
aspects of systems but also how to deal with new language constructs. Finally there is the
danger of the software systems simply becoming too specialized.

A few words are in order about libraries. While there is a tremendous amount of very
interesting work going on in the library area, we will not attempt to review it. A very good
example is the LAPAK work. Most of that work is going on for shared-memory systems
although there are some developments also for distributed memory machines. It is difficult to
develop efficient libraries in a way that includes both shared and distributed systems.

For distributed memory systems there is now substantial effort to develop communication
libraries that run on multiple systems. One example worth noting is the Suprenum system where
they have developed high-level libraries for 2-D and 3-D grid applicationsd. That library really
helps the user who has a grid problem to deal with. In fact it allows him to completely dispense
with explicit communication calls. He specifies a few communication parameters (topology,
grid size etc.) and then handles all interprocess communication through high-level geometrically
intuitive operations. The system partitions data sets effectively and calls low-level communica-
tion operations to exchange or broadcast data as needed.

One other point to note is that most codes in the real world don’t use libraries very heavily,
and so one has to be aware that not only is it important to port libraries, but the technology used
to design and implement algorithms in the libraries needs to be made available to the scientific
community in a way such that other users can adapt those same techniques into their codes.

-13-

The graphics area is certainly one of the weakest features of parallel systems. The Connec-
tion Machine is really the only system that has tightly coupled graphics capabilities - it supports
up to eight hardware frame buffers each running at 40 MB/sec. One disadvantage with the Con-
nection Machine solution is that graphics applications using the frame buffer are not portable.
However obviously the ability to at least do high-speed graphics outweighs this disadvantage. In
most systems, even if there is a hardware I/O capability that is fast enough, there is a lack of
software to support graphics over that [/O channel. Furthermore many systems actually force all
graphics to pass through a time-shared front end processor, and an Ethernet connection, ensuring
poor performance under almost any conditions.

The best solution is certainly to tightly couple parallel systems to conventional graphics
systems. This is a way to avoid getting into graphics systems that are specialized to specific
pieces of parallel hardware. Much effort is now underway at several laboratories to develop
such high-speed connections between parallel systems and graphics stations.

We will mention an experiment we’ve done at the Center for Applied Parallel Processing
(CAPP) in Boulder where we have connected a Stardent Titan, and a Silicon Graphics IRIS,
directly to the back end of a Connection Machine CM-2, allowing data to be communicated
between the CM-2 hardware and the graphics system at a very high speed, limited, in fact, only
by the back-end speed of the CM-25. The data is postprocessed on the graphics processor using
the very high polygon processing rates that are available on those two systems. This was first
implemented as a low-level capability based on IP type protocols. However once it was avail-
able we realized that it could be used to extend the domain of powerful objected oriented graph-
ics systems, such as the Stardent AVS system, to include objects resident on the CM-2. From
this point of view a Stardent user programs the graphics device as if the CM-2 is part of his sys-
tem.

One of the advantages here is that the Connection Machine can continue with its own
numeric processing without waiting for the user to complete visualization. For example the
CM-2 can go on to the next time step of a fluid code while you graphically contemplate what has
been computed to date.

Another point about this approach (based on a low-level standard protocol) is that it is easy
to run the same software over slow connections. In fact we have designed this software so that if
the direct connection to the back end is not available, it automatically switches to using Ethernet
links. This means you don’t have to be in the next room to the CM-2 hardware in order to use
the visualization system. Of course, you won’t get the same performance from the graphics, but
at least the functionality is there.

5. FUTURE SUPERCOMPUTING ENVIRONMENTS: HETEROGENEOUS SYSTEMS

Over the last 20 years we havc seen a gradual evolution from scalar sequential hardware to
vector processing and more recently to parallel processing. No clear consensus has emerged on
an ideal architecture. The trend to vector and parallel processing has been driven by the

-14-

computational needs of certain problems, but the resulting systems are then inappropriate for
other classes of problems. It is unlikely that in the near term this situation will be resolved, and
indeed one can antcipate further generatons of even more specialized processor systems
appearing. There is a general consensus that a good computing environment would at least pro-
vide access to the following resources:

e Scalar processors (e.g. workstations).

e Vector processors.

o Parallel machines: SIMD and/or MIMD
e Visualization systems.

e Mass-storage systems.

o Interfaces to networks.

This leads us to the last topic and what in the long run is probably the most important: hetero-
geneous systems and heterogeneous environments, and the importance of combining together a
spectrum of computing resources.

There is a simple way of avoiding the specialization problem described above. The key is
to develop seamless integrated heterogeneous computing environments. What are the require-
ments for such systems? Obviously high-speed communication is paramount - that means both
high bandwidth and low latency. Because different types of machines are present, a seamless
environment therefore requires support for data transformations between the different kinds of
hardware. Equally important, as I’ve argued in section 2 from previous experience with single
machines, is to try to support wherever possible shared-memory concepts. Ease of use will
require load balancing. If there are three Connection Machines on that system, one should be
able to load-balance them between the demands of different users. Shared file systems should be
supported, and so on. And all of this should be done in the context of portability of the user’s
code, because the user may not always design his codes on these systems initially. Obviously
the adoption of standards is critical.

Such an environment will present to the user all of the resources he might need to avail of
for any application: fast scalar, vector and parallel processors, graphics supercomputers, disk
farms and interfaces to networks. All of these units would be interconnected by a high
bandwidth low latency switch, which would provide transparent access between the systems.
System software would present a uniform global view of the integrated resource, provide a glo-
bal name space or a shared memory, and control load balancing and resource allocation.

The hardware technology is now at hand to allow such systems to be built. Two key
ingredients are the recent development of fast switching systems and the development of high-
speed connection protocols and hardware implementing these protocols, standardized across a
wide range of vendors. We illustrate with two examples.

Recently CMU researchers have designed and built a 100 Mbit/scc switch called NECTAR
which supports point to point connections between 32 processors’. A Gbit/sec version of NEC-
TAR is in the design stage. Simultaneously, various supercomputer and graphics workstation
vendors have begun to develop high speed (800 Mbit/sec) interfaces for their systems.

-15-

Combining these approaches we see that at the hardware level it is already possible to begin
assembling powerful heterogeneous systems. As usual the really tough problems will be at the
software level.

Several groups are working on aspects of the software problem. In our own group at the
Center for Parallel Processing in Boulder, Colorado, we have recently developed, as discussed in
the previous section, a simple heterogeneous environment consisting of a Connection Machine
CM-2 and a Stardent Titan graphics super work-stationS. The Titan is connected with the CM-2
through the CM-2 back-end, rather than through the much slower front-end interface which is
usually used for such connectivity. The object-oriented high-level Stardent AVS visualiz.tion
system is then made directly available to the CM-2 user, allowing him to access and manipulate
graphical objects computed on the CM-2 in real time, while the CM-2 is freed to pursue the next
phase of its computation. Essentially this means that to the user, AVS is available on the CM-2.
Porting AVS directly to the CM-2 would have been a formidable and pointless task. Further-
more the CM-2 is freed to perform the computations that it is best suited for, rather than wasting
time performing hidden surface algorithms or polygon rendering. These are precisely the sorts
of advantages that can be realized in a heterogeneous system.

Looking to the future, we believe that most of the research issues of heterogeneous comput-
ing will have been solved by the late 1990’s, and in that time frame we would expect to see
evolving heterogeneous systems coming into widespread use wherever a variety of distinct com-
putational resources are present. In the meantime one can expect to see more limited experi-
ments in heterogeneous environments at major research computation laboratories, such as Los
Alamos National Laboratory and the NSF Supercomputer Centers.

5.1. An Application for a Heterogeneous System

We will conclude by asking if there are problems that can use such systems? We will
answer the question by giving an example which is typical of many real-world problems.

The scientific application is the aeroelastic analysis of an airframe. The computational
problem is complicated because there are two distinct but coupled subproblems to be solved.
The real aerodynamic design problem, is not just to compute air flow over a plane in the context
of a static frame, but to design planes the way they are flown, which is dynamically. As soon as
you do that, you get into the coupled problem of the fluid flow and the airframe structure. There
is a structural engineering problem, which is represented by the finite element analysis of the
fuselage and the wing. There is a fluid dynamics problem, which is the flow of air over the wing
surface. Finally there is a real interaction between these two problems. Obviously the lift
depends on the wing surface, but correspondingly the fluid flow can cause vibrations in the wing.

One can represent the computation schematically as an two-dimensional (surface) structural
problem with O (N 2) degrees of freedom and a three dimensional fluid problem with typically
OWN 3 degrees of freedom. Here N measures the spatial resolution of each problem.

-16-

Typically the fluid computation can be solved by explicit methods but the finite element
problem requires implicit solution techniques. . The fluid models require solution time propor-
tional to the number of degrees of freedom. The finite element problems are typically sparse
matrix problems and it is hard to do better than O (N 3) on solution time these. Thus we have a
computation that is O (V3) for both the fluid and structure components.

Thus the two computational phases are much the same in overall computational complex-
ity. However, the communication of data, the interaction between the two phases, is related to
the surface only and is therefore an O (V) data-transfer problem. Therefore provided one is
solving a large enough problem so that the O (N 2) communication cost is negligible, one can
imagine solving the fluid part on a computer that is most effective for fluid computation and the
structural part on 2 machine that is most effective for structural problems.

We have been studying this problem quite actively at the University of Colorado8-10 We
have found that the fluid problem is best done on a machine like the Connection Machine where
one can take advantage of the SIMD architecture and work with grids that are logically rectangu-
lar. The structural problem is best done on machines that can handle irregular grids effectively,
for example a CRAY Y-MP. Thus ideally we would like to solve the whole problem on a
heterogeneous system that includes both CRAY and CM-2 machines. One should also
remember that both phases of this computation have heavy visualization requirements. Thus
both systems need to be tightly coupled to high-end graphics systems. Furthermore if a record is
to be saved of a simulation then high-speed access to a disk farm is mandatory due to the huge
volumes of data generated per run. A fully configured heterogeneous environment is therefore
essential. :

6. CONCLUSION

We conclude by remarking that the winning strategy in supercomputer design for the com-
ing decade is certainly going to be acquisition of a software advantage in parallel systems.
Essentially all of the MIMD manufacturers are likely to be using competitive hardware. It is
clear from recent experiences - for example, Evans and Sutherland -- that using anything other
than off-the-shelf components is too expensive. It follows immediately that different manufac-
turers can follow more or less the same upgrade strategies. They will end up with machines with
basically similar total bandwidths, reliability and so on. Thus the key to success in this market is
going to be to develop systems that have the best software. Key points there will be virtual
shared-memory environments and general-purpose computing capabilities.

-17 -

References

1.

10.

O. McBryan and R. Pozo, ‘‘Performance Evaluation of the Myrias SPS-2 Computer,”” CS
Dept Technical Report CU-CS-505-90 (submitted to Concurrency: Practice and Experi-
ence), University of Colorado, Boulder, 1990.

O. McBryan, ‘‘Optimization of Connection Machine Performance,’’ International Journal
of High Speed Computing, vol. 2, no. 1, pp. 23-48, 1990.

O. McBryan, ‘“The Connection Machine: PDE Solution on 65536 Processors,’’ Parallel
Computing, vol. 9, pp. 1-24, North-Holland, 1988.

M. Rosing and R. B. Schnabel, ‘“‘An Overview of Dino -- A New Language for Numerical
Computation on Distributed Memory Multiprocessors,”” in Parallel Processing for
Scientific Computation, ed. G. Rodrigue, pp. 312-316, SIAM, Philadephia, 1989.

K. Soichenbach and U. Trottenberg, ‘‘SUPRENUM - System essentials and grid applica-
tions,”’ Parallel Computing, vol. 7, North Holland, 1988.

L. Compagnoni, S. Crivelli, S. Goldhaber, R. Loft, O. McBryan, A. Repenning, and R.
Speer, A Simple Heterogeneous Computing Environment: Interfacing Graphics Work-
stations to a Connection Machine., CS Dept Technical Report, University of Colorado,
Boulder, 1991, in preparation.

Amould, E. A, Bitz, F. I, Cooper, E. C.,, Kung, H. T., Sansom, R. D., and Steenkiste, P.
A., ““The Design of Nectar: A Network Backplane for Heterogencous Multicomputers,’” in
Proceedings of Third International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS III), pp. 205-216, ACM, Apr 1989.

C. Farhat, S. Lanteri, and L. Fezoui, ‘“‘Mixed Finite Volume/Finite Element Massively
Parallel Computations: Euler Flows, Unstructured Grids, and Upwind Approximations,’” in
Unstructured Massively Parallel Computations, ed. R. Voigt, MIT Press, 1991.

A. Saati, S. Biringen, and C. Farhat, ‘‘Solving Navier-Stokes Equations on a Massively
Parallel Processor: Beyond the One Gigaflop Performance,’’ International Journal of
Supercomputer Applications, vol. 4, no. 1, pp. 72-80, 1990.

C. Farhat, N. Sobh, and K. C. Park, ‘‘Transient Finite Element Computations on 65,536
Processors: The Connection Machine,”’ International Journal for Numerical Methods in
Engineering, vol. 30, pp. 27-55, 1990.

